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June 13, 1997 . 

Abstract 

We use a radar-derived physical  model of 4179 Toutatis (Hudson and Ostro 1995, Science 270, 

84-86) to investigate close-orbit dynamics around that irregularly shaped, non-principal-axis rotator. 

The  orbital dynamics about  this body are markedly different than  the dynamics about uniformly 

rotating asteroids. The results of this paper have a wider application to orbit dynamics about bodies 

in a non-principal-axis rotation  state.  The  radar results support  the hypothesis that Toutatis has a 

homogeneous density distribution, and we assume a density of 2.5 g/cc. The asteroid’s gravity field 

is computed using a truncated harmonic expansion when outside of its circumscribing sphere and 

a closed-form  expression  for the potential field of an  arbitrary polyhedron when inside that sphere. 

The complete equations of motion are  timeperiodic due to  the complex rotation of the asteroid. 

The system is Hamiltonian and has all the characteristics of such a system, including conservation 

of phase volume, but  there is no Jacobi constant of the motion and zero  velocity surfaces cannot 

be used to analyze the system’s behavior. We also examine some  of the  closeorbit dynamics with 

the Lagrange planetary form of the equations of motion. Families of quasi-periodic “frozen orbits” 

that show minimal variations in orbital elements are found to exist very  close to  the asteroid; some 

of them are stable and hence can hold natural  or artificial satellites. A retrograde family of frozen 

orbits is  especially robust and persists down to semi-major axes of about 2.5 km, comparable to half 

of Toutatis’ longest dimension. We identify families of periodic orbits, which repeat in the Toutatis- 

fixed frame. Due to the time-periodic nature of the equations of motion, all  periodic orbits  about 

Toutatis must be commensurate with the 5.42 day period associated with those equations. Exact 

calculation of both  stable  and  unstable periodic orbits  are made. The sum of surface forces acting 

on a particle on Toutatis is time-varying, so particles on and in the asteroid are being continually 
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shaken  with  a  period of 5.42 days, perhaps enhancing the uniformity of the regolith distribution. A 

global map of the gravitational slope  reveals that it is  surprisingly  shallow  for  such an elongated, 

irregularly shaped object, averaging 16" globally and less than 35" over 96% of the surface. A global 

map of tangential accelerations  shows  no  values  larger than 0.5 mm/s2,  an average  value of 0.2 

mm/sz  and less than 0.25 mm/sz over 70% of the surface. A global map of the escape  speed  for 

launch  normal to  the surface  shows that quantity to be between 1.2 and 1.8 m/s over most of the 

surface. Each of  these  mapped quantities has  small  periodic  variations. We have  found trajectories 

that leave the surface,  persist  in the region of phase space around a frozen orbit,  and  then impact 

the surface after a flight time of more than a hundred days. Return  orbit  durations of years  seem 

possible. Whereas a uniformly rotating asteroid preferentially  accumulates  non-escaping ejecta on 

its leading  sides, Toutatis accumulates ejecta uniformly  over its surface. We render a variety  of  close 

orbits in inertial and body-fixed frames. 
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6 Conclusions 43 

1 Introduction 

The dynamics of orbits close to small, irregularly shaped asteroids are fundamental to studies of 

retention and redistribution of impact ejecta, to questions about plausible origins and lifetimes 

of asteroidal satellites, and to  the design of robotic and piloted spacecraft missions.  Scheeres et 

a]., (1996)  reviewed the  literature relevant to this topic and used a radar-derived model of 4769 

Castalia (Hudson and Ostro, 1994) to study close orbits  around that 1.6-km-long object, whose 

4.1 -h  principal-axis spin state is fairly ordinary. 

Here we use a radar-derived model of 4179 Toutatis, a 4.6-km-long object in an unusually 

slow, rather complex  non-principal-axis  spin state. We find the close-orbit dynamics around Toutatis 

to be  significantly Merent than those around a principal-axis rotator.  The analysis tools developed 

here are generally applicable to any non-principal-axis rotator. 

2 Toutatis Model, Rotational State and  Gravity  Field 

Our physical  model of Toutatis’ shape  and spin state was derived by Hudson and  Ostro (1995)  from 

a low-resolution subset of radar delay-Doppler  images obtained in Dec.  1992  by Ostro et al. (1995). 

The modeling  inversion  solved  for the asteroid’s shape and inertia  tensor, their orientation with 

respect to each other, initial conditions for the asteroid’s spin and orientation, the  radar  scattering 

properties of the surface, and the projected location of the asteroid’s center of mass in each frame. 

The model has 1600 shape  parameters and an effective spatial resolution of 84 meters. 

The orientational coverage  provided by the combination of Toutatis’ sky motion during the 18- 

day imaging sequence and  its non-principal-axis rotation  permitted  the  entire surface to be imaged, 

which  in turn produced a very accurate  shape model to be constructed, independent of the estimation 

of the inertia tensor. The modeling established that either Toutatis is nearly homogeneous or its 
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inhomogeneities  mimic the inertia tensor of a homogeneous  body. In this paper, we assume that 

Toutatis is  homogeneous,  with a density 2.5 g/cc. That value, although arbitrary, is comparable  to 

constraints on the surface or  bulk  densities of other asteroids that share Toutatis’ S classification: 

253 Ida (bulk  density = 2.6 f 0.5 g/cc, Belton et al .  1995;  4169 Castalia surface  density = 2.1 f 

0.4 g/cc, Scheeres et al. 1996;  1620 Geographos,  surface density - .2.4 g /cc ,  Ostro et a l .  1996) 

Figure 1: Radius contours of Toutatis. 

Figure 2: The shape of Toutatis and its coordinate axes shown  rendered in four perspective views. 

For describing positions about Toutatis we use a body-fixed coordinate system  whose  origin 

is at  the model’s  centroid and whose  axes (2,  y, z )  correspond to  the principal axes of smallest, 

intermediate and largest moment of inertia, respectively. Thus  the z-axis is aligned with the long 

axis and  the z-axis is aligned with the  short axis of Toutatis. Toutatis  fits  into  the bounding box 

-2.516 5 . z  5 2.086, -1.174 < y 5 1.116,  -0.950 5 z 5 0.980, it has a volume of 7.670 k m 3  and a 

mean radius of 1.223 km. The  ratios of the moments of inertia are: 

I z / I z  = 0.31335 

I,,/Iz = 0.94471 

Our assumed density gives a total mass of 

M = 1.917 X l O I 3  kg 

and a gravitational parameter 

p = GM = 1.279 X lo-’ km3/s2 
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where G = 6.67259 x lo-" km3/kg/s2. 

The  most  important  terms  of  the  harmonic  expansion of the  gravity  field  correspond to the 

CZ0, C22 and C30 coefficients (see Kaula,  1966 for a  description of gravity  harmonics). For the 

Toutatis  model  these  are: 

C20 = 0.77768/r: 

C Z ~  = -O.O1634/r: 

C ~ O  = -0.4858O/r: 

where r, is an arbitrary  normalization  radius.  These  coefficients  are  evaluated  using a coordinate 

frame that  places  the  equator  in the v-2 plane  and the "pole"  along  the z-axis. The  gravity  field 

involving  only  these  terms is: 

where r is the particle  radius  measured from the body  center  of  mass, 6 is the declination of the 

particle  and X is the  particle  longitude  in the body-hed'space. Note  that this formulation  assumes 

that the coordinate  frame is aligned  with  the  principal axes and that the declination  is  measured 

.with  respect to the minimum  moment of inertia axis. 

The computations  used in this  paper  use  gravitational  coefficients  up to order 20 when  outside 

of the circumscribing  sphere  of the body  (which  is  more  than  adequate).  When  within  this  sphere 

the gravity  field  is  evaluated from the polyhedral  shape  itself  (Werner  1994,  Werner  and  Scheeres 

1996). 

2.1 Rotational State 

Toutatis is in an unforced (torquefree), non-principal-axis (NPA) spin state. Its  rotational  dynamics 

cam be  described  in  terms  of  analytic  functions  and  simple  geometry  (MacMillan 1960), as follows. 
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The  (Euler) equations of motion are 

1.h = 4 x 1 . n  (9) 

where I is the inertia dyad of the body and Cl is the rotational velocity vector, or instantaneous 

spin vector. There are two integrals for this  equation, conservation of energy and conservation of 

angular momentum, so these equations are integrable and their solution can be expressed  in terms 

of the fundamental constants of rotational motion: 

The final constant of motion describes the  time at which the initial rotational vector  is  specified. 

The constants wl and ID have  physical interpretations in terms of the kinetic energy 

1 = 

and the angular momentum magnitude 

= I D W ~  

Thus W I  and I D  represent scalar versions of the body's effective rotation rate and inertia. 

9 



Using these integration constants the angular velocity f2 is computed as: 

where I,, I,  and 1, are  the principal  moments of inertia of Toutatis, T~ is the final constant of 

integration and t is  time. The functions sn, cn, dn are elliptic functions and are described  in 

MacMillan (1960) and  Whittaker  and Watson (1952). Toutatis is rotating about  its longest axis (z), 

which has the minimum  moment of inertia I,. 

The values of the integration constants (Hudson and Ostro, 1995) are: W I  = 1.8548 x lo-' 

rad/sec corresponding to a period of 3.92 days, and ID = 0.519831,, where I ,  is  used to scale  all 

the  inertia terms. 

The angular velocity  vector of Toutatis varies  periodically  with time. Within one orbit of 

this vector its magnitude varies  between 2.1287 x lo-' and 2.1122 x lo-' radians/second (4.39 and 

4.36 degrees/hour). Similarly, the angle  between the rotational velocity  vector and the z-axis varies 

between 21.904 and 20.162 degrees,.and the angle  between its z-axis and  the angular momentum 

vector  varies  between 50.486 to 49.550 degrees. The period of the rotational velocity  in the body- 

fixed frame is 130.156 hours, or 5.42 days. 

For describing the orientation of Toutatis in inertial space we use the right  ascension a,  the 

declination d and the hour angle W .  The transformation matrix from the inertial frame with z-axis 
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along the angular momentum  vector to the body-fixed frame is: 

T =  

cos 6 cos Q cos 6 sin Q sin 6 

- cos W sin 6 cos a - cos W sin 6 sin Q cos W cos 6 

+ sin W sin Q -sin w cos0 

sin W sin 6 cos a sin W sin 6 sin Q - sin W cos 6 

+ cos W sin Q - cos w cos Q 

For the Toutatis rotation state  the Euler angles are computed from: 

cot w = G- 8 4 7 )  

-cn(r) 

where n = 0.02744 and k2 = 0.0376 

For this  rotational mode the right ascension Q and hour angle W have a steady increase and 

the declination 6 librates  about a value  close to 40". The function ll is the elliptic integral of the 

3rd kind and is defined as: 

S e e  Whittaker  and Watson (1952) for a comprehensive  discussion of elliptic functions and integrals. 
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The hour  angle W describes the asteroid’s  roll  around its z-axis, while the right  ascension Q 

describes the angle that  the asteroid z-axis sweeps out in inertial space. The period of the right 

ascension  is  clearly  visible  when  viewed  from inertial space and is  equal to 176.4 hours, or 7.35 

days. This is  also the rotation period  which the asteroid would  have if it relaxed its rotation from 

its current state  to principal axis rotation about its largest moment of inertia ( I z ) ,  keeping angular 

momentum  conserved and decreasing  kinetic  energy to  its minimum  value ( a s  would happen in  a 

dissipative system). 

2.2 Symmetric  Inertia  Tensor  Approximation 

There is a simple  approximation to  the Toutatis  rotation state which  allows  for a simplified analytical 

approach to solving the dynamical equations for a particle  in orbit  about  Toutatis.  There is a small 

total variation  in nutation angle (about 0.94 degrees), but in  some situations we can assume that 

this variation is zero. This is  equivalent to assuming that  the I ,  and I ,  principal inertia values 

are equal. In this case the elliptic  functions sn(T),  cn(7)  and dn(r) degenerate to sin(T), cos(s) 

and 1, respectively; and the asteroid rotates as if it were  rolling on a circular  cone; the declination 

6 becomes a constant and  the right ascension Q increases  linearly  with time, its period  being the 

inertial period of the asteroid, 7.35 days; and the hour  angle W also  increases  linearly  with  time. We 

use this approximation when  analyzing the averaged equations of motion, as explained in the next 

section, but  not when  dealing  with  numerical  solutions  under the influence of the full gravitational 

field. 

2.3 Solar Perturbations 

An orbiting particle will be  subject to perturbations from the sun. For an ideal point this  perturba- 

tion is due solely to  the solar tide, and for an extended body  such as a spacecraft this  perturbation 

will also arise from the solar radiation pressure acting on the body.  Scheeres  (1994b)  discusses these 

effects  in greater detail for a spacecraft. The effect of solar radiation pressure  is not treated at all 
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in this  paper, while we will give a few comments on the  effect of the solar tide. 

The semi-major axis and eccentricity of Toutatis are 2.5154 AU and 0.6362, leading to peri- 

helion and aphelion distances of 0.915 and 4.116 AU. Combining these with the assumed Toutatis 

gravitational  parameter (1.279 x km3/s2) we find that  the Sun-Toutatis  libration points will 

vary  from  -170 km at perihelion to -1260 km at aphelion. Applying results from  Hamilton and 

Bums (1991) to Toutatis we find that orbits within -85 km will remain  bound to Toutatis over  long 

time periods. In Scheeres  (1994b) the effect of the solar tide on an  asteroid  orbiter is characterized 

and compared to the effect of the oblateness of the body.  Applying the  results of that paper we find 

the effects of Toutatis’ oblateness and of the solar tide on a particle  orbit are equal at a semi-major 

axis of -30 km at perihelion and -99 km at aphelion. Both effects are quite small at these radii, 

while the effect of the solar tide increases with increasing semi-major axis and that of the oblateness 

decreases with increasing  semi-major axis. For the  orbital  situations discussed in this paper the 

effect  of the solar tide will be  relevant  only when Toutatis is near perihelion, and even then it will 

be a such a small deet that we ignore it. 

3 Equations of Motion 

TO study  the dynamics of a particle in the Toutatis system one must study  solutions to  the equations 

of motion. These equations  are well  defined functions of Toutatis’s gravity field and spin state, and 

are suited for  full numerical integrations of close orbits. However, it is also instructive to introduce 

approximate  equations of motion that can simplify  some analyses and shed  light on the character of 

the dynamics. 

3.1 Complete Equations of Motion 

To describe motion about  Toutatis in the most  complete sense, we write the  equations of motion of 

a particle in a body-fixed coordinate system: 
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where r is the body-fixed  vector  from the asteroid center of mass, (-) and (l) are first and second 

time derivatives with respect to  the body-fixed, rotating frame, SZ is the instantaneous rotation vector 

of the asteroid and U, is the gradient of the gravitational potential U(r), which  is time-invariant in 

the Toutatis-fixed frame. 

As the rotational velocity vector fl can  be  expressed in terms of analytic equations, the 

equations of motion  can  be evaluated as an analytic function of time. These equations of motion 

are time-periodic as the rotational velocity  is periodic with period 5.42 days. To evaluate the term 

i 2  in the equations use Eq. (9). In this complete system, we will always include the full rotational 

dynamics without any approximation and will  use the full gravity field. 

There is a rich literature on the properties of solutions of time-periodic equations of motion, 

and some  very  general results can be  stated  about  the properties of solutions to these equations. For 

the current analysis, there are several points that are helpful to make. First, the Jacobi integral does 

not exist for this system. Second, despite this these equations still describe a general Hamiltonian 

system, so the integral invariants will all exist; namely the divergance of the equations is  zero so 

that these equations still conserve phase volume. This point is  very important when we consider the 

stability of solutions to  the complete equations, as the invariance of phase volume  implies that no 

solution to these equations can be asymptotically stable. It is this general property of Hamiltonian 

systems that make long-term dynamical predictions very  difficult. Third, any periodic solution of 

these equations must have a period which  is an integral multiple of the period of the equations of 

motion, 5.42 days, in contrast with the case of a uniformly rotating body (Scheeres, 1994a, Scheeres 

et al., 1996) for  which periodic orbits exist over a continuous range of periods. 

3.2 Approximate  Equations of Motion 

To enable analytical solutions of the equations of motion it is  usually  required to simplify them to 

a form that is  more amenable to analysis and to qualitative understanding. Before  simplifying the 

equations of motion, it is  convenient to cast them into the Lagrange planetary equations (Brouwer 

14 



and Clemence, 1961). Given a perturbing  potential of the form R ,  these equations  are: 

dn 2 i3R 
dt na ahl, 
" - " 

de 1 - e2 aR d i , a R  
dt naze O M o  na2e aw 
- = ""- 

dfl csc(i) aR 

where o is the  semi-major axis, e is  the  eccentricity, i is the  inclination, w is  the  argument  of 

periapsis, R is the  argument of the  ascending  node, Mo is the mean  anomoly  epoch  and n is  the 

mean motion.  Unlike  the  complete  formulation,  which  was  expressed  in the Toutatis  fixed  frame, 

this simplified  formulation  is  made  in  the inertial.frame. Thus,  the  perturbing  potential R (which 

equals the full gravity  field minus the  central  potential p/lrl) must  include  the  rotational  dynamics 

of Toutatis  implicitly. 

In this paper  we will concentrate  on the gravity coe5cients C20 and c30, which  control 

the  majority of the qualitative  dynamics seen about  Toutatis.  Unlike  uniformly  rotating  asteroids 

(Scheeres,  1996)  the  effects  associated  with the CZ2 term  do  not  play a large  role  at  Toutatis for 

reasons  which will be discussed. 

In the  following  discussion  the  inclination of the  orbit  and  the  "equatorial"  plane  are  defined 

by the  Toutatis  rotational angular momentum  vector,  which is assumed to be  fixed  in  inertial space. 

To  describe  Toutatis'  inertial  orientation it is sufficient to express  the  unit  vector of Toutatis's z-axis 
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in inertial coordinates: 

P, = [cos 6 cos Q , cos 6 sin a,  sin 61 (32) 

uhcre 6 and a are Euler  angles. In general P, will rotate  about  the z-axis and nutate, as 6 librates 

i n  the vicinity  of 40" and Q increases with time. However  if  we  invoke the  symmetric  inertia tensor 

approximation then d = 40" constant, and Q = cit with a period of 7.35 days. 

It is also  necessary to specify the particle orbit in inertial space.  Given an inertial coordinate 

frame with i along the asteroid's rotational angular momentum vector, define the vectors: 

f h  = sin R sin i i  - cos R sin ip + cos i i  (33) 

rn = cosRZ + sinRp (35) 

where R is the argument of the ascending  node and i is the inclination. r h  is the  unit vector  along 

the orbit's angular momentum vector, rn defines the location of the ascending node in the i - 6 

r = r [cos urn + sin urT] (36) 

where t is the radius of the particle and u = f + w,  where f is the  true anomaly and w is the 

argument of the periapsis. 

Given these definitions the contributions of C20 and C30 to  the gravity field are: 

Roo = - [ ~ ( P z  . r,)2 - 11 PC20 
2r3 
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where r, is the unit vector pointing towards the particle (r, = c o s u r ~  + sinurr) .  

The influence of the C20 and C30 terms on Toutatis’s close-orbit dynamics becomes clear if 

we average the Lagrange planetary equations. The usual practice is to average over  one orbit of the 

particle, but in some situations it is useful to average over the (time-varying) potential as well. 

Under the symmetric inertia tensor approximation, Toutatis’s z-axis rotates once around the 

angular momentum  vector  every 7.35 days. A particle orbit’s period, to first approximation, is: 

1.543a312 hours (40) 

where the semi-major axis a is  expressed in kilometers. Thus, these two periods are equal when 

a = 23.55 km.  The averaging procedure is not strictly valid around this resonance, but  further from 

the asteroid it is acceptable to average over both  the particle orbit  and Toutatis’s rotational motion. 

Since the orbit  perturbations  due to Toutatis  are so small at these distances, we do not discuss the 

regimes outside of 20 km. Figure 3 shows the number of Toutatis revolutions per particle orbit as a 

function of semi-major axis. 

Figure 3: Number of Toutatis revolutions per particle orbit.  Three regimes are identified here, the 

sub-resonant regime  where the particle has multiple orbits per Toutatis  rotation,  the resonant regime 

where the orbit arid Toutatis period are approximately equal, and the super-resonant regime  where 

Toutatis  has multiple rotations per particle orbit. 

Holding the Toutatis  rotation state fixed and averaging the perturbing  potentials over one 

particle orbit yields: 
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where: 

P, ' r h  = cosisind+sinicosdsinA 

P, rn = cosdcosA 

(43) 

(44) 

P, .rT = sinisind-  cosicos6sinX (45) 

In these  equations  i is the  inclination  and X is  the  relative  node  where X = R - a. These  aver- 

aged potentids can then  be  used in the Lagrange  equations  with the Euler  angles as a function  of 

time.  Note  that  there is no need to restrict  the  above  potential to the symmetric inertia tensor 

approximation,  although  below we do this to analyze  the  dynamics using these  averaged  potentials. 

Now, for completeness, we average  over the Toutatis  rotational  dynamics as well. We adopt 

the symmetric  inertia  tensor  approximation, so the declination 6 is  fixed  and Q increases  linearly  in 

time.  Introducing  these  assumptions  and  averaging  over  time  yields  the  doubly-averaged  potential: 

We do not  compute the second  average  of R30 as it  has  a  negligible  effect at these  larger  radii. 

Note that if 6 + go", then the potential R20 becomes  equivalent to the familiar  averaged 

potential for an oblate/prolate  body. Thus, motion in  the  super-resonant  regime  will  be  similar to 

the familiar case of orbiting a body  with  rotational  symmetry  about its spin axis. 

4 Orbital  Dynamics  About  Toutatis 

In this  section we proceed from the simplified  system to the  complete system, starting  with  discussion 

of the averaged  effect  of the C2o gravity  term. In conjunction  with  this  term we will find a family 

Of "frozen orbits"  defined for a wide  range  of  orbital  parameters.  Study of these  orbits  and  the 
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simplified equations will shed  light  on some general  results for orbits about a body in complex 

rotation. Next, the effect of the C30 gravity  term will be added and its influence for Toutatis  orbits 

will  be discussed. A more restricted class of frozen orbits is  defined  even  when this effect  is  included. 

Finally,  motion in this regime  under the full equations of motion,  with  no rotational or gravitational 

approximations, is  discussed.  Again, subsets of the families  of  frozen orbits found  in the simplified 

systems  persist  even in this more  dynamic  environment. 

A "frozen orbit" is not a  periodic orbit - it does not necessarily  close  upon  itself  in  phase  space. 

Rather,  an orbit is  considered to be frozen  when its averaged orbital elements, or some  function of 

its averaged orbital elements, are constant solutions to  the averaged equations of motion. If a frozen 

orbit is stable  and its initial conditions are used  in the non-averaged equations of motion, then the 

osculating orbital elements in the ensuing  motion  will  oscillate about  the values  corresponding to  the 

frozen orbit, so frozen orbits are more  easily  identified  with  quasi-periodic orbits than with  periodic 

orbits themselves. The stability of a frozen orbit is  usually evaluated in terms of the averaged 

equations themselves, so frozen orbit stability is  no guarantee that motion  in the full  system will 

oscillate about the frozen orbit elements.  Indeed, if the transient variations in the full system are 

too large, the averaging assumption may  no  longer  apply and  the frozen orbits may not persist in 

the full system. Conversely, if the transient variations are small  enough, or the frozen orbit  stability 

robust enough, then the frozen orbit may  persist  in the full  system and can  be  identified as a  class 

of orbits that yield  minimal variations in the orbital elements. Such classes of orbits are useful  in 

analyzing the phase space of a system and, practically, are candidate  orbits for natural and artificial 

satellites. 

4.1 The Effect of the Czo Gravity Term 

Considering  only the CZO gravity term in the averaged  Lagrange equations we find: 

da 
dt 
- = o  
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de 
dt 
- = o  

Invoking the symmetric  inertia-tensor approximation, we assume that d! is constant  and that  the 

declination 6 = 40' and is constant. The dynamics of i and X are coupled  only with each other 

and the dynamics of w are coupled to  the dynamics of these  two  elements. The evolution of i and 

X exhibit periodic  motion and appear to be integrable in a formal  sense. The dynamics of Mo feed 

directly into all of these equations as it implies a modification of the semi-major axis a. Given an 

initial semi-major axis of a, the motion of the epoch  modifies it to: 

. In computing values and conditions  from the Lagrange equations, ii should  replace a everywhere, 

and  the above equation can then be used to recover the  true value of a. 

The magnitude of the orbit angular momentum  vector  is  conserved  in this system because 

both a and e are conserved. The  orbit angular momentum unit vector,  however,  is not conserved and 

will precess and  nutate as a function of time.  Note that  the projection of the instantaneous change 

in the angular momentum  vector  is perpendicular to  the asteroid  pole, P,, i.e., that P, . r,, = 0. 
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4.1.1 Frozen Orbits Including Only C20 

1Vhen the C20 coefficient is studied in isolation there is a family of frozen orbits that merit  some 

study. In the current problem the elements  which can be  frozen are the inclination i and node X. 

Assume that the node X is at the value f n / 2 ,  then: 

where the f denotes  whether X = fn /2 .  Inserting these values into Eqs. (49) and (50) yields: 

di " = o  
dt (57) 

Then if A can be frozen both i and X will be constant on  average. The condition  for X to be frozen 

can be written as: 

3nCzo T- 
4pz 

cscis in2(6fi)  = Q 

This can be converted into a condition on the semi-major axis and eccentricity: 

(59) 

= ~ 6 6 . 6 6 8  csci sin 2(6 f i )  (61 1 

where the sign and corresponding  value of X are chosen so that  the right-hand side  of the equation 

positive (7 kin 2(6 * i )  > 0). 
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From this relationship we can extract specific  inclination  ranges  where  frozen orbits will exist: 

(2771 + 1)7r/2 7 6 < i < m7r 7 6 ,  where m = 0 ,  f l ,  f 2 , .  . .. For Toutatis, with 6 = 40", for the X = x / 2  

solution the frozen  inclinations  lie  between 50" < i < 140", while  for the X = -7r/2 solution the 

possible  inclinations are 0" 5 i < 40" and 180" 2 i > 130".  For the nominal  values of Toutatis these 

solutions are plotted  in  Figure 4 for  circular orbits ( e  = 0). 

Figure 4: Semi-major axis for  a  frozen  circular orbit as a  function of inclination and node X. Derived 

using the averaged equations with C20 only. 

The stability of these frozen orbits in the averaged equations of motion  can also be computed 

. by linearizing the frozen orbit solution about X and i and noting that  the linear  system  can be 

reduced to  the simple  equation: 

i r 2  sin i cos 6 
= 7 cos(6 i )  [cot i + cot(6 f i )  - tan(6 f i ) ]  

A solution is stable if A2 > 0 and is unstable otherwise. The X = n/2 solutions are  unstable for 

i > 93",  while  all of the X = -n/2 are stable. This stability criterion is a weak one at best, as in the 

face of the non-averaged gravity field the  true solutions  suffer large oscillations about  the nominal 

frozen  elements.  Moreover the oscillation  period  associated with the linear  solution tends to be long, 

on the order of days, so the gravity field can operate on the oscillating  solution  over  longer time 

spans. 

Now consider the argument of periapsis.  Writing Eq. (51) at the frozen orbit condition  yields: 

If i and X are frozen, then w will have a secular  motion in general.  Whenever the transcendental 

equation 1 f cot i sin 2(6 f i )  - 3 sin2(6 f i )  equals zero this secular rate is  nominally  zero.  For the 
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X = x/2 frozen orbit solution this only  occurs at i = 101.0',  which  is an unstable solution (the other 

solutions at i = 26.1', 152.9" occur at non-frozen orbit values of the inclination). For the X = - x / 2  

frozen orbit solution this occurs at i = 27.1" and 153.9' (the other solution at i = 79.0" occurs at a 

non-frozen orbit value of the inclination). The ability of the argument of  periapsis to be frozen will 

be of greater interest once the C30 gravity field term is  considered. 

When  near a stable frozen orbit solution the node X will oscillate about f x / 2  and the incli- 

nation will oscillate about a mean  value  close to  the  the frozen  inclination  value. The argument of 

periapsis will  in general  have a secular  motion,  although there are special  values of inclination at 

which this element  will also be  frozen, as noted  above. 

If not started at or  near  such a frozen orbit (in the case of C20 only) the resulting  dynamics 

of i and X are more  complex. The motion  for i exhibits, in  general, a double  periodicity  while X 

can either increase or decrease  secularly or librate  about a mean  value. Figure 5 plots the averaged 

inclination and Figure 6 plots tan(i/2) sin X and tan(i/2) cos X for a sequence of orbits for a fixed 

initial inclination and semi-major axis with e = 0 as the initial value  of X is  changed. These plots 

show the solution to the averaged equations only and  thus  are idealized. 

Figure 5: The evolution of the inclination and relative  node  for  different initial values of the node X 

for orbits with initial values Q = 3.0,e = 0 , i  = 70, which are frozen initial conditions for X = n/2. 

Here, X = n/2 yields the frozen  solution  while X = -x/2 yields the maximum  excursion  in the 

inclination. Integrated using the averaged equations with C ~ O  only. 

If the orbit is not locked into a frozen orbit,  then the dr term in the equation for  may 

dominate the equation and the generalized  node can be  modeled as a monotonically  decreasing 

element. In this case the driving equations of motion reduce to: 

* = (9) (cos2 6 sin 2~ sin i + sin 26  cos X cos i>  



Figure 6:  The evolution of the inclination and relative  node  for  different initial values of the node X 

for orbits with initial values a = 3.3, e = 0,  i = 27, which are frozen initial conditions for X = -7r/2. 

Here, X = -n/2 yields the frozen  solution  while X = n/2 yields the maximum  excursion in the 

inclination. Integrated using the averaged equations with C20 only. 

j, = - (9) [cos26 - 2sin26J cosi- ir 

where the term i denotes the time average of the inclination  used to compute the general  secular 

trend in X and the singly  averaged potential for X has been  replaced  with the doubly averaged 

potential. Neglecting the eccentricity variations, the equation for the evolution of inclination then 

takes on a simple form, being  driven by time periodic amplitudes. A full  solution  for the inclination 

cannot be found  in  general  for this case.  However,  solutions can be found if  each driving term is 

considered separately  and are of the form exp(cos X) and exp(sin 2X). 

4.2 Combined  Effects of the CZo and C ~ O  Terms 

Now consider what  happens in the averaged equations when the C30 term is added to  the dynamics. 

In the averaged equations the C30 term  has  no effect on the semi-major axis and  has a second order 

effect on the inclination, relative node, argument of periapsis and  the mean  epoch. Thus  this  term 

acts primarily on the eccentricity,  yielding the additional equation: 

This  equation links the dynamics of e and w to  the previously  closed system of i and X, and  thus 

complicates the dynamics significantly. Practically speaking, the eccentricity now has a long-period 

oscillation, causing the  total angular momentum of the orbit to no  longer  be  conserved and allowing 

the periapsis radius to descend to lower altitudes. 
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Whereas  motion in the averaged  system with only C20 present was seen to be  regular  (see 

Figs. 5 and 6 ) ,  the C30 term destroys this regularity.  Since the semi-major axis is  conserved, the 

particle orbits cannot escape  from Toutatis. However,  due to  the eccentricity  oscillation the periapsis 

radius can  be  decreased to a value at which  impact  with Toutatis occurs. Thus,  the C30 term is the 

primary mechanism  by  which  particles are removed  from orbit via impacts with the Toutatis surface. 

At  larger orbital radii there may  be  enough  "clearance"  between the minimum  periapsis radius and 

the asteroid  surface to avoid this impact. In this case the orbits are stable in the averaged equations 

and can  continue  indefinitely. 

4.2.1 Frozen Orbits Including C20 and c30 

Since we have not modified the dynamical equations for the elements other  than eccentricity, the 

frozen orbit results discussed  previously still hold. Now, evaluating Eq. (67) at a frozen orbit yields 

the equation: 

where the initial semi-major axis and eccentricity are properly  chosen  according to Eq. (60). The 

equation is  multiplied  by cos w ,  implying that  the eccentricity  can  be  frozen if the argument of peri- 

apsis is frozen at fx/2. Thus,  there is still the possibility of designing an orbit which is completely 

frozen  in all' of its averaged  elements. 

A question of immediate interest is the stability of these solutions. As discussed  previously, 

there are only  two stable solutions in the C20 case  where the argument of periapsis  is  frozen; at 

i = 27.1' and i = 153.9' with X = -90' and a and e chosen  properly. The characteristic equation 

for this system ( i ,  X, w and e  coupled together) can be written in the form: 

A4 + A* (1 - esinuC30c1) A2 - esinwC30 [I - 5sin2(6 - i ) ]  €2 = 0 (69) 

where A2 is the same coefficient as in Eq. (63), c1 is small relative to A', €2 > 0 and w = fx /2 .  

The stability condition  for this system is that all  solutions h2 to  the above quadratic equation be 
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real and negative.  Writing out the solution we see: 

A2 = - - A 2  (1 - esinuC30~1) 1 
2 

f;\lA'(l - esinuC30~1)~ + 4esinuC30 [1 - 5sin2(6 - i ) ]  €2 

The controlling stability condition, assuming that €1 < A', is that sinwC30 [(l - 5sin2(6 - i ) ]  < 0, 

a then A2 is  assured to be  negative. For Toutatis c30 is  negative,  implying that for the i = 27.1O 

solution the w = n/2 frozen orbit solution is stable  and  the w = -r/2 frozen orbit solution is 

unstable; conversely,  for the 153.9' solution the w = -n/2 frozen orbit solution  is stable and  the 

u: = n/2 frozen orbit solution  is unstable. 

Figures 7 and 8 show the inclination and periapsis radius of the  stable  and unstable frozen 

orbits over 100 days. These runs were  made by integrating the averaged equations with the initial 

conditions Q = 3.3, e = 0, i = 27, X = -90 and w = f 9 0  (which are slightly perturbed  from a frozen 

orbit).  The solution to the unstable system shows the large disruption that  the C30 t e n  can  have 

on the  orbit dynamics. 

Figure 7: The evolution of the averaged  inclination  over  100 days starting in a frozen orbit (including 

a frozen argument of periapsis) with w = f90. The w = n/2 case has a stable eccentricity variation 

while the w = -n/2 case is unstable. Integrated using the averaged equations with both CZO and 

c30 * 

4.3 Orbits  in the Full Problem 

The analysis performed  above  using the averaged equations of motion  shed  light  on the qualitative 

dynamics of motion about an asteroid such as Toutatis. Two major  components to  the motion are 

seen, due to  the C20 term  and  the C ~ O  term respectively. The CZO term causes the  orbit angular 
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Figure 8: The evolution of the averaged  periapsis  radius  over 100 days starting in a  frozen orbit 

(including a frozen argument of periapsis)  with w = f 9 0 .  The w = 7r/2 case  has  a stable eccentricity 

variation  while the w = -n /2  case  is unstable. Integrated using the averaged equations with both 

c20 and c30. 

momentum  vector to precess  &d nutate while the c30 term causes the eccentricity to vary  with 

time. These effects, taken either separately or together, can move an orbit’s osculating  elements  far 

from their initial  values.  When orbits are evaluated in the full  problem,  including the full  gravity 

field and the unapproximated rotational state,  the motion retains the same qualitative signatures as 

would be expected  from the averaged  analysis:  oscillations in the inclination and eccentricity  with 

the semi-major axis are conserved  on  average.  However,  while the averaged equations predict the 

qualitative behavior of the orbit, they do not, in  general,  provide a precise  prediction .of how an 

individual orbit will  evolve. 

Now  we  will investigate both the fully  frozen orbits (where the inclination, relative node, 

argument of periapsis and eccentricity are frozen) and the partially frozen orbits (where  only the 

inclination and relative node are frozen).  Since the unstable solutions will  in  general be unstable 

in the full  problem as well,  we investigate only those orbits that were found to be stable in the 

averaged approximation, aiming to answer  several  questions. First, do the appropriate elements 

oscillate about  their nominally  frozen  values, and more  specifically  does the frozen orbit “persist” 

in the full equations of motion?  By  persist we mean that  the orbit retains its characteristic frozen 

nature over a finite time interval, arbitrarily set  to 50 days in this paper. Persistence of a frozen 

orbit solution indicates that  the orbit is a stable quasi-periodic  solution and may be of interest for 

an orbiting spacecraft. Second, if the orbit elements do not oscillate about their nominally  frozen 

values,  does the orbit still  persist  in that  it does not impact Toutatis over the time span indicated? 

Orbits of this  type may  be  chaotic and hence of interest from  a  dynamical systems point of view. 
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And lastly, if the orbit does not persist, how swiftly does it impact with the Toutatis surface? In this 

case the initial frozen orbit may  be an unstable quasi-periodic  solution which provides an indication 

of  how long  ejected particles can  survive in orbit before  they are swept up onto the surface again. 

4.3.1 Fully Fkozen Orbits in the Full  Equations of Motion 

Out of the six fully  frozen orbits found  in the previous  sections  only  two were  found to be stable in 

the averaged equations, both with a relative node of -90" and occurring at inclination and  argument 

of  periapsis pairs of i = 27.1", w = +90" and i = 153.9", w = -90". The first is  called the direct 

fully frozen orbit and the  latter  the retrograde fully  frozen orbit. For  each of these the semi-major 

axis/eccentricity constraints are (Figure 9): 

63.695 direct 
a3*5(1 - e2)2 = 

[ 112.261 retrograde 

Figure 9: Semi-major axis and eccentricity relations for the direct and retrograde fully  frozen orbits. 

The corresponding radius of periapsis is also shown.  Derived  using the averaged equations with both 

c20 and c30. 

To check the persistence of these frozen orbits, initial conditions for e = 0, 0.1,  0.3 and 0.5 

were propagated in the full equations of motion  for 50 days. All  of the direct fully  frozen orbits 

proved to be unstable and  impacted with Toutatis within a few days after diverging  from the initial 

orbital element  values. Their instability can  be understood if one  recalls that at these values the 

secular rate of w is small or zero, although the transient oscillations  cause this element to vary from 

its initial value of 90". This allows  for a secular  increase in eccentricity which leads to impact for this 

class of orbit.  (This simple test does not preclude the possible existence of a fully  frozen direct orbit 

in this vicinity. A higher-order analysis of the frozen orbits accounting for the  transient oscillations 

may  provide a better  starting condition for the motion.) 
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The  retrograde fully frozen orbits were also unstable (for the same reason) and eventually 

impacted, although some persisted for  over 50 days before doing so. The longer persist times were 

due to  the greater semi-major axis of these orbits. Curiously, if we input  the same orbital  parameters 

but shift the argument of periapsis to +go", then the retrograde  orbits persist for arbitrary lengths 

of time. (These orbits  appear  stable  but  are not fully  frozen in that  the argument of periapsis has 

a secular trend and the eccentricity has large variations.) 

4.3.2 Partially Frozen Orbits in the Full Equations of Motion 

We also consider the evolution of the partially frozen orbits in the real model.  These orbits nominally 

yield constant values  of A and i on average, but allow the argument of periapsis to have a secular 

rate  and hence the eccentricity will have oscillations. These  frozen orbits are more robust  and are 

more persistent in the complete model.  They  have a fixed inclination with respect to  the Toutatis 

angular momentum vector, and the orbit plane will precess around this vector with a period equal to 

the  Toutatis period about  its  angular momentum vector in inertial space, approximately 7.54 days. 

The varying eccentricity will  modify the angular momentum of the orbit  and cause the secular rate 

of w to vary in the  orbit as well. 

Let us divide these frozen orbits  into  three main  families: direct,  retrograde  and positive-node 

partially frozen orbits (see Fig. 4). The direct and  retrograde families have a relative node of -go", 

and as the name  indicates the  positivenode family has a relative node of +go". As was observed 

before, the positive node family is only formally stable for inclinations less than 93". All members 

of this family that were  checked are unstable in the relative node and hence  have larger variations 

in inclination. A few members  were  found that persisted for  over 50 days,  but none that persisted 

for over 100 days. Thus  this  partially frozen orbit family does not seem to exist in the full problem. 

The direct  partially frozen orbits were  seen to persist for  semi-major axes greater than 3.6 

km (inclinations less than 24O). When at lower semi-major axes the secular rate in the argument of 

periapsis begins to slow and  the eccentricity variations become large enough to send the  orbit  into 

impact with Toutatis. At  lower semi-major axis values,  where the secular rate of the  argument of 
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periapsis  grows again, this family  does not reappear and remains unstable. 

The family of retrograde partially frozen orbits proves to be  much  more robust and persists 

through the neighborhood of its completely  frozen  family  member (although it does not freeze its 

argument of periapsis and eccentricity) down to semi-major axes of about 2.5 km. At the lower 

range of semi-major axis the persistence of the orbit is a function of its initial argument of periapsis. 

As one  changes this angle (holding  all other conditions fixed) the subsequent orbits will or will not 

persist. Therefore, the solutions are occurring in a rather sensitive area of phase space, possibly 

broken into redons of stable and unstable quasi-periodic orbits. The existence of stable members 

of this family  may be related to these orbits being retrograde, as in the case of uniformly rotating 

asteroids one finds that retrograde orbits tend to be much more stable. The mechanism for  this 

stability is not yet clear, but probably involves an effective averaging of the gravity field, as is the 

case for retrograde orbits  about uniformly rotating asteroids. The persistence of these frozen orbits 

is remarkable in that  the orbit periapsis will often dip below the maximum radius of Toutatis. Yet 

since the orbit plane is  locked into a resonance  with Toutatis, the orbit is protected from impact 

with the asteroid. Given that  the current frozen orbit analysis does not consider the effect  of the 

short period oscillations on the particle orbit, it is  conceivable that improved initial conditions could 

be computed which  would  allow the frozen orbits to persist over a wider range of orbits. Figure 10 

shows the trajectory of shch an orbit in the Toutatis-fixed frame. 

Figure 10: Frozen orbit plotted in the Toutatis-fixed frame over 100 days. Initial condition is a 

circular retrograde frozen orbit with semi-major axis of 3 km, inclination of 139'. Integrated using 

the full equations of motion with no approximation. 
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4.4 Periodic Orbits 

Periodic orbits, which  close  on  themselves in the body-fixed frame are interesting for several reasons, 

especially when computed  using the full equations of motion. First, once a periodic orbit is found, 

t t l t  solution to the equations of  motion  is  valid  for  all time. Second,  having  found  such an  orbit, it 

is then possible to compute its stability properties, which also provide  insight into the stability of 

general  motion  in the phase  space near the periodic orbits. For example,  if a periodic orbit is  found 

1 0  be stable, then the region of phase space about  that orbit will also  be stable  and will consist 

of quai-periodic orbits. Conversely, if a periodic orbit is  found to be unstable, then its hyperbolic 

manifolds will also influence  motion  in the surrounding phase space and cause it  to be unstable as 

well.  Unlike  uniform rotators where  families of periodic orbits can  have arbitrary periods, periodic 

orbits around a complex rotator can only have periods that  are commensurate with the period of the 

rotational velocity  in the body-fixed frame (130.156 hours for Toutatis). Due to  the time-periodic 

nature of the equations of motion  in the body-fixed  frame, an orbit that repeats itself  with a period 

different than  the period  of the equations of motion will be subject to different accelerations and 

will not follow the  same  path. 

The condition for an orbit to be  periodic  is: 

r(to) = r(to + N T )  

v(to) = v(to + N T )  (73) 

where to is an arbitrary initial time, T is the period of the equations of motion (130.156 hours) and 

N = 1,2,3, .  . . is the number of periods over  which the solution  closes  in  on  itself. 

To compute the periodic equations in the full equations of motion one must take  an initial 

guess of a periodic orbit  and integrate it over NT, computing the  state transition matrix at the same 

time. Then the offset  between the initial and final conditions must  be  multiplied by the inverse of 

the  state  transition  matrix so that  the  appropriate correction  can  be  applied to  the initial condition. 
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This entire process is interated until the mismatch between the initial and final conditions is equal 

to zero (within the numerical  accuracy of the integrator). Since there is no Jacobi integral in this 

problem, the  state transition matrix is  fully  invertible. (This is not the case  for  uniformly rotating 

asteroids where the computation of periodic orbits must  be  made in a four-dimensional subset of 

the six-dimensional initial state.) 

The difficulty in this computation is  in  finding a good initial guess to  the periodic orbit, as 

the convergence radius in the complete equations of motion tends to be quite small.  Various tricks 

and approximations may  be  used to generate the initial conditions and  an  approach which  works 

uniformly well has not  been  found to date. An attractive,  and sometimes  successful, approach is to 

use the aver& equations of motion to generate the initial conditions. When using this approach 

one is restricted to finding  periodic orbits that  are close to  the frozen orbits discussed  previously. 

This is  reasonable as one would expect that many  periodic orbits would share some of the general 

properties of the frozen orbits. Since the frozen orbits can be  specified analytically in terms of 

averaged orbital elements it is only  necessary to specify that  the body-fixed  position  close  in  on 

itself, as then the velocity will similarly  close in on  itself. In the following  only circular orbits are 

investigated. 

To transform an orbit expressed  in inertial space (Eq. (36)) into  the body-fixed space, pre- 

multiply the  orbit position  vector with the transformation matrix Eq. (18) to find the body-fixed 

position  vector: 

cos 6 cos X 1 
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-cosicos6sinX+sin6sini 

(T . r ~ )  = cos i COS(W) sin 6 sin X - cos i sin(W) cos X + sin i COS(W) cos 6 (76) 

- cos i sin( W )  sin 6 sin X - cos i cos( W )  cos X - sin i sin( W )  cos 6 
4 

Evaluating the orbit at a partially frozen, circular orbit (t = a, A = f7r/2) yields the simplified 

system: 

sin u cos(6 f i )  

cos u sin( W )  - sin u cos( W )  sin( 6 f i )  1 
1 

Sufficient conditions for the orbit to close  on  itself are then easily noted. First,  the angle W must 

repeat.  The period of W is equal to the period of the  rotational velocity vector, T. Thus we 

immediately have the condition that  the period of the orbit must  be of the form NT. Next, the 

orbit elements must be chosen so that  the period of u is commensurate with NT. The period of u 

depends on both the  true anomaly and the argument of periapsis. Specify the mean  frequency of u 

by nu, then the period associated with u is Tu = 2n/nu. The frequency nu is computed as: 

Evaluating  this at a frozen orbit yields an  analytic expression: 

sin idr nu = ' sin 2(6 A i )  [2 - 6 sin'(6 f i )  f cot i sin 2(6 f i ) ]  (79) 

where n is the mean motion and the semi-major axis value  is  chosen according to  the frozen orbit 

rules, so nu is a function of the assumed value of the relative node ( f n j 2 )  and of the inclination. 

The periodicity condition is then: 

and the inclination is  chosen so that this condition is  satisfied  for  different  values of M and N .  Figure 

11 shows a plot of nuT/(2a) as a function of inclination and Figure 12 shows the same quantity as a 

function of semi-major axis for circular partially frozen orbits.. Note that  the positive relative node 
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frozen orbit solutions  only yield periodic orbits with a high  commensurability.  Given the already 

unstable nature of orbits in this regime it is  doubtful that this approach  can  yield  useful  initial 

conditions  for  periodic orbits. The  orbits with lower commensurability,  which  should  be the easiest 

to compute numerically,  only  occur at inclinations  close to 0 or 180". As the inclinations move 

away  from  these  values the dynamic  environment  becomes stronger and the sensitivity to initial 

conditions  grows,  meaning  again that  it becomes  more  difficult to compute orbits given these coarse 

initial conditions. 

Figure 11: The  ratio of orbit period  frequency  with the Toutatis period  frequency as a function of 

inclination  along the family of partially frozen orbits. The direct and retrograde negative node and 

the positive  node  solutions are shown.  Wherever the value of this  ratio is a rational number there 

is  potentially a periodic orbit existing in the full equations of motion. 

Figure 12: The ratio of orbit period  frequency  with the Toutatis period  frequency as a function 

of semi-major axis along the family of (circular) partially frozen orbits. The direct and  retrograde 

negative node and the positive  node solutions are shown.  Wherever the value of this  ratio is a 

rational number there is  potentially a periodic orbit existing  in the full equations of motion. 

These initial  conditions  have  been  used  succesfully to compute the direct and retrograde 1:l 

periodic orbits  and the 1:2 and 1:3 retrograde periodic orbits, where N = 1 is the number of Toutatis 

periods per M ( =  1,2,3) particle orbits  about Toutatis. The  actual transition from the frozen orbit 

initial conditions to  the periodic orbit in the full problem  is  non-trivial.  In  only  very few cases 

did the estimated initial conditions  yield the proper  result. Where this did  not  work a strategy of 

estimating the periodic orbit in the presence of the 2nd order gravity field alone  worked  in  many 
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cases.  Once this solution was found, then the order of the gravity field was incrementally increased 

until the periodic orbit was  found  in the full  degree and order 20 field. 

We have computed the complete set of four direct and four retrograde 1:l periodic orbits. The 

1:l direct orbits have  semi-major axes at - 13.3 km, eccentricity less than 0.011, and inclination 

at N 0.4". The retrograde 1:l orbits have semi-major axes at - 47.3 km, eccentricity less than 

0.00014, and inclination at - 179.995'. Analysis of these orbits families  shows that two of the  orbits 

are stable and two are unstable. The different orbits in each family differ  by - 90" in argument of 

periapsis. The unstable orbits have  two  1-dimensional hyperbolic manifolds arriving and  departing 

from them. Motion  along these unstable manifolds tends to keep the semi-major axis of the  orbit 

conserved and yields  bounded oscillations of the eccentricity. This is expected as these orbits lie 

close to the class of persistent frozen orbits. 

The retrograde families at 1:2 and 1:3 were  more  difficult to compute. The 1:2 orbits have 

semi-major axes - 16.5 km, eccentricity bounded by  0.02 and inclinations at - 179.8'. The 1:3 

orbits have semi-major axes 11.2 km, eccentricity bounded by 0.006 and inclinations at - 179.2'. 

All members that have  been computed in the full gravity field are found to be stable. Computation 

of these orbits under the 2nd degree and order gravity field alone is fairly simple.  However, extension 

of those orbits  to  the full gravity field (or even the 4th degree and order gravity field) are much 

more difficult. This implies that  the large C30 gravity term may destroy various  family members or 

'cause  them to bifurcate into multiple orbits causing our numerical iteration procedure to become 

less robust (as there may be multiple solutions close to each other in phase space). 

Figure 13 shows  some of these periodic orbits in the Toutatis body-fixed space. Figure 14 

shows threedimensional renderings of these periodic orbits in the  Toutatis body-fixed space. 

4.5 Implications of the Rotational State on the Gravity  Field 

Orbital dynamics about  Toutatis would be significantly  different  were Toutatis in a different rotation 

state; One can consider the "generic" rotation state of an asteroid to be  uniform rotation  about its 
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Figure 13: Periodic orbits  about  Toutatis shown in three  orthographic  projections. Shown are: a) 

All 1:l Direct  periodic orbits,  b) One 1:l Retrograde periodic orbit,  c) Two 1:2 Retrograde periodic 

orbits, d) One 1:3 Retrograde periodic orbit.  Integrated using the full equations of motion with  no 

approximation. 

Figure 14: Periodic orbits  about  Toutatis shown rendered in  color.  Shown are: a) All 1:l Direct 

periodic orbits,  b) One 1:l Retrograde periodic orbit,  c) One 1:2 Retrograde periodic orbits, d) One 

1:3 Retrograde periodic orbit.  Integrated using the full equations of motion with no approximation. 

maximum  moment of inertia, as this is the lowest  energy rotation state  that a body can have given 

a fixed d u e  of angular momentum and, assuming dissipation acting over a sufficiently  long time 

span, it is the expected final state of all complex rotators. Were Toutatis in such a configuration, 

its gravity field expanded about its rotational pole  would  show a significant change in terms to: 

CZO = -0.438, C22 = 0.186 and C30 = 0.038, yielding a change  in  sign and value of 1720,  an  order of 

magnitude increase in C22 and an order of magnitude decrease in C30. Needless to say, the orbital 

behavior about  Toutatis would  be significantly different. The main effect of the  Toutatis  rotation 

state as compared to  the generic case is threefold:  the inclination has large periodic variations, 

orbits have nominally constant d u e s  of energy due  to  the decreased C2z term,  and the large C30 

term induces an oscillation in the eccentricity that can cause impact on the surface of Toutatis. Were 

Toutatis in the generic rotation state it would have  small changes in inclination and  larger changes 

in a and e due to  the larger C22 term. It would also have smaller changes in e due to  the C ~ O  term. 
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5 Dynamics of Surface Particles 

5.1 Surface Forces 

The force  on a  particle on Toutatis is the sum of contributions from the  asteroid’s gravity, the 

asteroid’s rotation, and forces arising from the particle’s contact with other  particles/surfaces. If 

the  particle is stationary on the surface, then a l l  these forces  sum tu zero. If the forces are mismatched 

then  the  particle will migrate across the  Toutatis  surface till it finds a configuration where these 

forces again sum to zero. 

The sum of gravitational and rotational accelerations acting on a particle at a position ro can 

be  expressed as the vector: 

The surface contact force acting on the  particle is then: 

if the particle is stationary. In the body-fixed frame the gravitational accelerations are always 

constant,  but  the  rotational accelerations are  time periodic  with a period of 5.42 days. Thus, the 

contact force acting on the particle must also  be time-periodic if the particle remains fixed  in the 

Toutatis frame. Were the particle free to roll, like a marble trapped in a depression, we  would 

’ observe an oscillation of the particle’s position with a period of 5.42 days. 

Since the rotation rate is so slow, the  total variation of this acceleration is small. Were the 

rotation rate faster  the  asteroid would  shed kinetic energy via such oscillations and relax to principal 

axis rotation. For Toutatis,  Harris (1994) has argued that  the time scale for relaxation is  longer 

than  the  age of the solar system. 

To investigate the geography of regolith migration and  accumulation, we calculate  the normal 

and tangential components of the force as functions of location.  The normal component is  found 

by taking the dot  product of the surface force N(r, t )  with the local normal,  denoted by the vector 
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n(r) .  Let us suppress the dependence on location: 

Nn = N . n  

The remaining surface force  is then tangent to  the local Toutatis surface: 

Nt = N - Nnn 

The local  slope: 

quantifies the degree from which the surface departs that of the geoid. Figure 15 shows this slope 

computed Over the surface of Toutatis. Nt points toward decreasing 4 and particles will  move  in this 

direction, normal to the constant 4 (slope) contours. Per our previous  discussion, the slope as defined 

here will vary with time. Figure 16 plots the variation in the slope at several points on the  Toutatis 

surface, note that this variation is rather small.  Also note that  the slope  over the majority of the 

Toutatis surface is  less than 35", in  many  places  much  less than this. This is somewhat surprising 

given the elongated and rough surface of Toutatis and may be due to the continued shaking that 

particles on the surface experience. 

Figure 15: Slopes  over the surface of Toutatis, shown rendered in  four perspective views. The 

viewing geometry is the same as in Figure 2. The slopes range from 0 up to 40". The higher  slopes 

are at the long ends of the asteroid while the smaller slopes are along the asteroid's waist. The 

average slope is 16" and 96% of the surface has a slope less than 35". 

The magnitude of the tangential accelerations over the  Toutatis surface is of interest as if 

the  total magnitude of the tangent force is small, the local surface forces  may  easily  overwhelm 

it, allowing  for  high slopes without the particle slipping. On Toutatis the maximum tangential 

acceleration is 0.48 mm/s2 at latitude -10 and longitude -135 degrees, the average value  is 0.2 
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Figure 16: Variation in slope at points on Toutatis. Note that the  total variation is small  due to  the 

small rotational acceleration of Toutatis.  The period of the variation is fixed at 5.42 days, or 130.2 

hours. 

mm/s2, and is  less than 0.25 mm/s2 over 70% of the surface. The  magnitude of the tangential 

acceleration is  highly correlated with the surface slope  over Toutatis. 

5.2 Surface  Escape  Speed 

The speed  needed for a particle to escape Toutatis approximately equals the landing speed of a 

particle (or spacecraft) approaching from a high orbit. For a non-rotating, spherical body, the 

escape speed  from the surface of that body  is independent of the direction of the  initial velocity  (if 

the  trajectory does not re-intersect the body). For  bodies  with rotation  the direction of the  initial 

velocity will change the escape speed of the particle. For example, if the initial velocity points in 

the same sense as the body rotation  direction,  the escape  speed will be  lowered. If the body has a 

non-spherical shape  there is a further complication to  the computation of escape speed, because the 

true escape speed of a particle launched from the surface will also depend on the gravity field that 

it interacts with after launch. 

Let us compute the escape speed considering only the local gravity, the  total mass of the 

body, and the rotational motion of the body. We assume that a particle leaves the  asteroid  normal 

to  the local surface: v = un where n is the local  normal to  the surface and v is the launch speed. 

Then  the particle’s inertial velocity  is: 

where r is the vector to  the surface  and R is the asteroid’s angular velocity vector. To find the 

local escape  speed,  set the magnitude of the  inertial velocity equal to J- where Umax(r) = 
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max(U(r) ,p/Jr l ) .  Evaluating this condition  and  solving the resulting quadratic equation yields: 

This  quantity has been computed over the surface of Toutatis using the polyhedral gravita- 

tional field (Figure 17) and is  between 1.2 and 1.8 m/s over  most of the surface. The escape speeds 

also have a periodic variation which is, again, small. Comparisons between these computed escape 

speeds and numerical integrations of particles leaving the surface with the  same velocity  show  good 

agreement in that the numerically integrated particles in general escape from Toutatis.  Thus, these 

numbers are reasonable maximum bounds on ejecta speeds which do not escape from Toutatis. 

Figure 17: Local normal escape  speed  over the Toutatis surface, shown rendered in four perspective 

views. The viewing  geometry is the  same as in Figure 2. The  contribution of the angular velocity 

to  the escape speed is small, hence the variation in these speeds are due mostly to  the  gravitational 

field of Toutatis. 

Figure 18: Change in  local normal escape speed at points on Toutatis.  The  total  variation of the 

escape speeds is less than a few centimeters per second, much  less than  this over  most of the body. 

The period of this variation is 5.42 days  or 130.2 hours. 

5.3 Dynamics of Ejected Particles 

What is the final evolution of a particle launched  from Toutatis with  less than escape speed? The 

short answer  is that  it will re-impact the asteroid. Though this sounds like an obvious answer, it is 

not necessarily true for  uniformly rotating  asteroids. In those  situations  the effect of the C22 term of 

the gravity field  is to change the semi-major axis (or  energy) of the orbit significantly over  one orbit 
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of the body,  allowing a particle with an initial  sub-escape  speed to gain  escape  speed and leave the 

body  (Scheeres et al 1996). Toutatis’ C ~ Z  gravity term is small  enough and its rotational motion  not 

of the proper  form so that  that these post-launch  energy effects are very small and do  not contribute 

to more ejecta leaving the system. The time scale  for a particle to re-impact on Toutatis can  be 

quite long,  however. 

There  are several factors contributing to  the potential longevity of ejected particles remaining 

in orbit: the complex  motion of Toutatis, the persistence of the frozen orbits in the real Toutatis 

system and  the lack  of large variations in orbit energy due to a small C22 term.  The complex  motion 

of Toutatis in inertial space  allows a particle to avoid re-impacting at its first return  to periapsis. 

Whereas the original orbit’s periapsis would  lie beneath the  Toutatis surface by definition,  since the 

asteroid moves in inertial space it is  possible that at the next periapsis  passage that  the asteroid 

will no  longer  be in the proper place and time for impact to occur. In a dynamical  environment 

such as Toutatis’ this is sufficient time for the orbit to change into a form that avoids impact for a 

sustained period of time.  Of  course,  only a subset of the  total number of particles ejected randomly 

will  avoid immediate impact. 

It is after  the ejected particle faiis to impact within the first few orbits that  the persistence 

of the frozen orbits play a factor. As discussed earlier, the persistence of the frozen orbits close to 

Toutatis does not imply that they are  stable orbits. One expects these orbits  (more precisely these 

regions  of  phase space) to be ultimately unstable, instability in this case  meaning that  the particles 

will re-impact the  Toutatis surface at some future time. The instability associated with these orbits 

is hyperbolic with  some of them having a very  long time constant. Then, as this is a Hamiltonian 

system, the existence of the unstable manifolds also implies the existence of similarly slow stable 

manifolds,  leaving  open the possibility that a particle could  become entrained in the  stable manifold 

of a frozen orbit region of the phase space and  approach the region  closely  before departing on an 

unstable manifold  leading to an impact. As examples we have  found orbits which  leave the  Toutatis 

surface, hang  out in the vicinity of a frozen orbit  and then re-impact onto Toutatis,  the entire orbit 
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lasting for a few hundred days. Figure 19 shows the eccentricity, semi-major axis and periapsis 

radius of such an orbit  lasting - 257 days from ejection to  impact. Figure 20 shows three different 

re-impacting ejecta  orbits with hang-times of different lengths, these views are  taken from DeJong 

et a l . ,  1997. 

Figure 19: Re-impacting ejecta over 257 days. Shown are: a) Eccentricity, b) Semi-Major Axis c) 

Periapsis radius.  Integrated using the full equations of motion with no approximation. 

Figure 20: &impacting ejecta  orbits at Toutatis shown  in  body-fixed (lhs) and  inertial  (rhs) coor- 

dinate frames. Shown are: a)  Orbit  duration of 1.24 days, b)  Orbit  duration of 2.93 days, c)  Orbit 

duration of 167.94 days. 

Since Toutatis does not impose large energy variations on an  orbiting  particle, the lifetime  of 

an orbit is significantly extended as compared to  the environment of a uniformly rotating  asteroid. 

The practical  upshot of this is that after a meteorite  impacts  Toutatis,  ejecta may persist in orbit 

for extended periods of time. 

5.4 Distribution of Returning  Ejecta 

How  will returning  ejecta  be  distributed over the surface of Toutatis?  This is a difficult question 

best  addressed,  perhaps, by simulating  impacts  and  tracking  the evolution of the  ejecta that do 

not  escape, considering secondary and  perhaps higher generation impacts. We have not done such 

simulations for Toutatis,  but some  inferences about  ejecta  distribution  are possible now. In terms 

of geometric cross-section, it is clear that  the ends of Toutatis will be  more  difficult to hit  and that 

the long, slender regions of Toutatis will be easier to hit. Since the  rotational velocity of Toutatis is 

small, ejecta are not expected to fall preferentially on the leading edge of the asteroid.  Rather,  due 
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to Toutatis’ complex rotation state one  would expect the infall of ejected particles to be distributed 

more uniformly  across the surface  of the body for the following  reasons. 

First,  the complex rotation of the body  will present  any  given patch of its surface to a 

larger range of angular orientations in the sky  over  time than if it were  in  uniform rotation.  Thus, 

depending on  when a given particle falls back onto the surface, there is a larger pool of potential 

impact locations.  Moreover, as described  above, the inclination of a particle’s orbit can  have large 

changes  in a fairly short time span. Changes in orbital inclination correspond to  the particle’s angular 

position about  the asteroid being distributed over a larger range than with a uniform rotator. This 

again wouid lead to larger range of surface locations on  which the  reimpacting particle may fall. 

These effects are in contrast to simulations of the distribution of ejecta on the surface of a uniformly 

rotating asteroid (Scheeres et al., 1996), which  show a preference  for ejecta accumulation on the 

leading  edges and a general migration of reimpacting ejecta towards the asteroid’s poles if the effect 

of a non-zero  coefficient of restitution is modeled  in the re-impact  dynamics. 

6 Conclusions 

This paper is a first step toward a comprehensive understanding of closeorbit  dynamics  about a 

body of arbitrary  shape  and spin state.  The dynamics of orbits close to Toutatis clearly are very 

different from the dynamics of orbits close to a uniform rotator,  and to some  degree are a product 

of this asteroid’s unusual shape. 

Issues raised in this paper that deserve further  attention include the computation of periodic 

orbits  around complex rotators  and  the refinement of analytic solutions to the averaged equations 

of motion. This  paper also sets  the  stage for detailed exploration of the dynamics of non-escaping 

impact ejecta as a function of impact location and energy,  with the goal of understanding the 

geography of regolith redistribution on the asteroid’s surface. 
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Orbit dynamics about 4179 Toutatis 

D.J.  Scheeres,  S.J. Ostro, R.S. Hudson, E.M. DeJong, S. Suzuki 

Figure 1: Radius  contours of Toutatis. 

Figure 2: The shape of Toutatis and its coordinate  axes  shown  rendered in four  perspective  views. 

Figure 3: Number of Toutatis revolutions  per particle orbit. Three regimes are identified  here, the 
sub-resonant  regime  where the particle  has  multiple orbits per Toutatis rotation, the resonant  regime 
where the orbit and Toutatis period are approximately  equal, and  the super-resonant  regime  where 
Toutatis has multiple rotations per  particle orbit. 

Figure 4: Semi-major axis for a frozen  circular orbit as a function of inclination and node X. Derived 
using the averaged  equations  with C20 only. 

Figure 5: The evolution of the inclination and relative  node  for  different initial values ofthe node X ' 

for orbits with  initial  values n = 3.0, e = 0, i = 70, which are frozen initial conditions  for X = n/2. 
Here, X = n/2  yields the frozen  solution  while X = -n/2 yields the maximum  excursion  in the 
inclination. Integrated using the averaged equations with C20 only. 

Figure 6: The evolution of the inclination and relative  node  for  different initial values of the node X 
for orbits with  initial  values a = 3.3, e = 0, i = 27, which  axe  frozen  initial  conditions for X = -7r/2. 
Here, X = -7r/2 yields the frozen  solution  while X = 7r/2 yields the maximum  excursion  in the 
inclination. Integrated using the averaged equations with C20 only. 

Figure 7: The evolution of the averaged  inclination  over 100 days starting in a frozen orbit (including 
a frozen argument of periapsis) with w = f90 .  The w = 7r/2 case has a stable eccentricity  variation 
while the w = -n /2  case is unstable. Integrated using the averaged equations with both C20 and 
c30 

Figure 8: The evolution of the averaged  periapsis radius over 100 days starting in a frozen orbit 
(including a frozen argument of periapsis)  with w = f90. The w = 7r/2 case has a stable eccentricity 
variation  while the w = -n/2 case  is  unstable. Integrated using the averaged equations with both 
C20 and (730. 

Figure 9: Semi-major axis and eccentricity  relations  for the direct and retrograde fully  frozen orbits. 
The corresponding radius of periapsis is also  shown.  Derived  using the averaged equations with both 
C20 and G o .  

Figure 10: Frozen orbit plotted in the Toutatis-fixed  frame  over 100 days. Initial condition  is a 
circular retrograde frozen orbit with  semi-major axis of 3 km, inclination of 139". Integrated using 
the full equations of motion  with no approximation. 

Figure 11: The ratio of orbit period  frequency  with the Toutatis period  frequency as a function of 
inclination  along the family of partially frozen orbits. The- direct and retrograde negative  node and 
the positive  node  solutions are shown.  Wherever the value of this ratio is a rational number there 
is  potentially a periodic orbit existing in the full equations of motion. 

Figure 12: The  ratio of orbit period  frequency  with the Toutatis period  frequency as a function 
of  semi-major  axis  along the family  of (circular) partially frozen orbits. The direct and retrograde 
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negative  node  and the positive  node  solutions are shown.  Wherever the value of this ratio is a 
rational number there is potentially a periodic orbit existing in the full equations of motion. 

Figure 13: Periodic orbits about Toutatis shown in three orthographic projections. Shown are: a) 
All 1:l  Direct  periodic orbits, b) One 1:l  Retrograde periodic orbit, c) Two 1:2 Retrograde periodic 
orbits, d) One 1:3 Retrograde periodic orbit. Integrated using the full equations of motion  with  no 
approximation. 

Figure 14: Periodic orbits about Toutatis shown rendered  in  color.  Shown. are: a) All 1:l Direct 
periodic orbits, b) One 1:l Retrograde periodic orbit, c) One 1:2 Retrograde periodic orbits,  d) One 
1:3 Retrograde periodic orbit. Integrated using the full equations of motion  with  no approximation. 

Figure 15: Slopes  over the surface of Toutatis, shown  rendered  in  four perspective views. The 
viewing  geometry  is the same as in  Figure 2. The slopes  range  from 0 up to 40". The higher  slopes 
are  at  the long  ends of the asteroid while the smaller  slopes are along the asteroid's waist. The 
average  slope is 16" and 96% of the surface  has a slope  less than 35". 

Figure 16: Variation  in  slope at points on Toutatis. Note that  the  total variation is small due to the 
small rotational acceleration of Toutatis. The period of the variation is  fixed at 5.42 days, or 130.2 
hours. 

Figure 17: Local  normal  escape  speed  over the Toutatis surface,  shown  rendered  in  four  perspective 
views. The viewing  geometry  is the  same as in Figure 2. The contribution of the angular velocity 
to the escape  speed is small, hence the variation in  these  speeds are due  mostly to  the gravitational 
field  of Toutatis. 

Figure 18: Change in  local  normal  escape  speed at points on Toutatis. The  total variation of the 
escape speeds is less than a few centimeters per second,  much  less than  this over  most of the body. 
The period of this variation is 5.42 days or 130.2 hours. 

Figure 19: Re-impacting ejecta over 257 days.  Shown are: a) Eccentricity, b) Semi-Major  Axis c) 
Periapsis radius. Integrated using the full equations of motion  with  no approximation. 

Figure 20: &impacting ejecta orbits at Toutatis shown  in  body-fixed (lhs) and inertial (rhs) coor- 
dinate frames.  Shown are: a) Orbit duration of 1.24 days, b) Orbit duration of 2.93 days, c)  Orbit 
duration of 167.94 days. 
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Figure 1: Radius  contours of Toutatis. 
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Figure  4:  Semi-major axis for a frozen  circular  orbit as a function  of  inclination  and  node X. Derived 
using  the  averaged  equations with CZO only. 
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Figure 5: The evolution of the inclination and relative  node for  different initial  values of the  node X 
for orbits  with  initial  values a = 3.0, e = 0, i = 70, which  are  frozen  initial  conditions for X = n/2. 
Here, X = n/2 yields the frozen  solution  while X = -n/2 yields  the maximum excursion  in the 
inclination.  Integrated  using  the  averaged  equations  with CZO only. 
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Figure  6:  The  evolution  of  the  inclination  and  relative  node  for  different  initial  values  of  the  node X 
for orbits  with  initial  values a = 3.3, e = 0, i = 27, which  are  frozen  initial  conditions  for X = -n/2.  
Here, X = -n/2 yields  the  frozen  solution  while X = n/2 yields  the maximum excursion in the 
inclination.  Integrated using the  averaged  equations  with C ~ O  only. 
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Figure 7: The  evolution of the averaged  inclination  over  100  days  starting  in a frozen  orbit  (including 
a frozen  argument of periapsis)  with w = f90 .  The w = 7r/2 case  has a stable  eccentricity  variation 
while  the w = -7r/2 case is unstable.  Integrated  using  the  averaged  equations with both CZO and 
c30. 
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Figure 8: The evolution of the averaged periapsis radius over 100 days starting in a frozen orbit 
(including a frozen argument of periapsis) with w = f90 .  The w = n/2 case has a stable eccentricity 
variation while the w = -n/2 case  is unstable. Integrated using the averaged equations with both 
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The  corresponding  radius  of  periapsis  is also shown.  Derived  using  the  averaged  equations  with  both 
C20 and C3o. 
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Figure  11: The ratio  of  orbit  period  frequency  with the Toutatis  period  frequency as a function of 
inclination  along  the  family  of  partially  frozen  orbits.  The  direct  and  retrograde  negative  node  and 
the  positive node solutions  are  shown.  Wherever the value  of  this  ratio  is a rational  number  there 
is potentially a periodic  orbit  existing in the full equations of motion. 
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Figure  12:  The  ratio  of  orbit  period  frequency  with  the  Toutatis  period  frequency as a function 
of  semi-major axis along  the  family  of  (circular)  partially  frozen  orbits.  The  direct  and  retrograde 
negative  node  and  the  positive  node  solutions  are  shown.  Wherever  the  value of this  ratio  is a 
rational  number  there is  potentially a periodic  orbit  existing  in  the full equations of motion. 
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Figure  13:  Periodic  orbits  about Toutatis shown  in  three  orthographic  projections.  Shown are: a) 
All 1:l Direct  periodic  orbits, b) One 1:l Retrograde  periodic  orbit, c) Two 1:2  Retrograde  periodic 
orbits, d) One  1:3  Retrograde  periodic  orbit.  Integrated  using  the full equations of motion  with  no 
approximation. 
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Figure  16:  Variation  in  slope at points on Toutatis.  Note  that the total  variation  is  small  due to the 
small  rotational  acceleration of Toutatis.  The  period of the  variation  is  fixed at 5.42 days, or 130.2 
hours. 
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Figure 18: Change in local  normal  escape  speed at points on Toutatis. The  total variation of the 
escape  speeds is less than a few centimeters per second,  much  less than this over  most of the body. 
The period of this variation is 5.42 days or 130.2 hours. 
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Figure  20:  Re-impacting ejecta orbits at Toutatis  shown in body-fixed  (Ihs) and inertial (rhs) coor- 
dinate frames. Shown  are: a) Orbit  duration of 1.24 days, b) Orbit  duration of 2.93 days, c) Orbit 
duration of 167.94  days. 
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